
© 2006 Texas Instruments Inc, Slide 1

Hands-On: Experiencing Enhanced
Emulation Debugging

Stefan Schauer
Product Application Engineer

Texas Instruments

© 2006 Texas Instruments Inc, Slide 2

• Introduction to the Embedded Debug Logic (Enhanced Emulation
Module: EEM)

Show different implementation Levels of the EEM
EEM Limitations and Behaviors

• Lab: Setting a Breakpoint on Stack Overflow
Using On-Chip Trace Buffer to see where the problem did occur

• Lab: Setting a Breakpoint on Fetch outside allowed Area
Using On-Chip Trace Buffer to see where the problem did occur

• Lab: Setting a Breakpoint on a Variable
Stop on Write
Trace on Write
Stop on Write of a dedicated Value

• Lab: Using the Trigger Sequencer
• Lab: Clock Control
• Lab: Using On-Chip Trace Buffer as Real-Time Watch
• Lab: Building own complex Breakpoints with combining of Triggers

Agenda

© 2006 Texas Instruments Inc, Slide 3

Code
Security

Embedded Emulation
• Debug real time in system

No application resources used
Full speed
Breakpoint
Single step
Complex trigger
Trace

© 2006 Texas Instruments Inc, Slide 4

FET – One Tool For Every Device
• Assembler/linker
• 4KB C compiler
• Common IDE
• JTAG interface
• Target Board
• $149 USD

© 2006 Texas Instruments Inc, Slide 5

MSP430 EEM Architecture

O
R

O
R

AND

Break
(CPU Stop)

Store

Reactions

...

Basic Triggers

Basic Trigger Combination
Trigger

Sequencer

Cntrl
MDB
MAB

Cntrl
SELD
IOP

Cntrl
MDB
MAB
CPU

State Storage

...

...

...
Clocks

Clock
Control

...

...

...
CPUCPU R

eg. W
rite

R
eg. W

rite

M
A

B
/M

D
B

M
A

B
/M

D
B

© 2006 Texas Instruments Inc, Slide 6

Available EEM Resources
F11x1 /

F12x F12x2 F13x /
F14x

F15x /
F16x

F20xx /
F21x1 /
F22xx /
F23xx

F41x FE42x /
FW42x FG43x

F43x /
F44x /
FG46x

Triggers
MAB/MDB-Trigger 2 2 3 8 2 2 2 2 8

<=/>= - - X X - - - - X
R/W - - - X - - - - X
DMA - X - X - - - X -
16bit Mask - - - X - - - - X

Reg.-Write-Trigger - - - 2 - - - - 2
<=/>= 1 - - - X - - - - X
16bit Mask - - - X - - - - X

Combination 2 2 3 8 2 2 2 2 8
Trigger Sequencer - - - 1 - - - - 1
Reactions

Break X X X X X X X X X
State Storage - - - X - - - - X

State Storage
Internal - - - X - - - - X

Clock Control
Global - - - X X X X X X
Modules - - - X - - - X X

Device

Note: Flash devices only

© 2006 Texas Instruments Inc, Slide 7

Influence and Resource Requirement
The EEM:
• Does not use any internal CPU registers or memory
• Does not use interrupt vectors
• Does not insert debugging code or software

breakpoints
• Has no influence on the program until a break event

Exception:
• Devices <=28 pin share the JTAG pins with port pins
• Spy Bi-Wire: use of RST/NMI pin

© 2006 Texas Instruments Inc, Slide 8

Exceptions
• Complex breakpoints stop the CPU after the

instruction causing the break.
• When a break occurs, the execution of the current

instruction will always be completed.
• EEM cannot prevent an invalid value from being

written into an address or register.
• It is not possible to trigger on timer values. Only the

values on the address or data bus can be observed.

© 2006 Texas Instruments Inc, Slide 9

Where to find the menus
• Breakpoint:

View | Breakpoint

• New Breakpoint:
Right Click into the Breakpoint window and select New Breakpoint

• State Storage Configuration
Emulator | State Storage Control

• State Storage Window
Emulator | State Storage Window

• Trigger Sequencer Control
Emulator | Sequencer Control

© 2006 Texas Instruments Inc, Slide 10

• Introduction to the Embedded Debug Logic (Enhanced Emulation
Module: EEM)

Show different implementation Levels of the EEM
EEM Limitations and Behaviors

• Lab: Setting a Breakpoint on Stack Overflow
Using On-Chip Trace Buffer to see where the problem did occur

• Lab: Setting a Breakpoint on Fetch outside allowed Area
Using On-Chip Trace Buffer to see where the problem did occur

• Lab: Setting a Breakpoint on a Variable
Stop on Write
Trace on Write
Stop on Write of a dedicated Value

• Lab: Using the Trigger Sequencer
• Lab: Clock Control
• Lab: Using On-Chip Trace Buffer as Real-Time Watch
• Lab: Building own complex Breakpoints with combining of Triggers

Agenda

© 2006 Texas Instruments Inc, Slide 11

Lab: Stack Observation
• Nested functions or

local declarations if
arrays could easily lead
to this problem

• Set a conditional
breakpoint on the Stack
Pointer so that the CPU
stops if the SP
decreases below
0x20C0.

© 2006 Texas Instruments Inc, Slide 12

Lab: Stack Observation
Target: Halt CPU if SP decrements below a certain level
Demo Program: Clock_TB1.c
Detailed Lab Instructions:
• Open breakpoint dialog: View | Breakpoints
• Clear all previous breakpoints
• Create new “Conditional” Breakpoint

Break At: SP (for Stack Pointer – Note: ‘SP’ should be upper case !)
Type: Register
Operator: <=
Access: write
Mask: not enabled
Condition: 0x20C0
Action: Break

• Close the dialog with OK
• Start program execution

Program should stop in the function ‘foo’ after the 80 bytes have been allocated on
the stack (This should take approximately 8 seconds.)

© 2006 Texas Instruments Inc, Slide 13

Lab: Using Trace for Stack Observation
• Open the State Storage

Control
Enable state Storage
Enable Buffer wrap around
Trigger action: None
Storage Action on: Instruction Fetch
Apply

• Open the State Storage
Window

• Execute Program again:
Push the reset Button and execute
the program again
After the breakpoint was hit observe
the output in the State Storage
Window

© 2006 Texas Instruments Inc, Slide 14

Lab: Stack Observation (MSP430X)
Due to the speed improvements in the MSP430X CPU an additional

Breakpoint is required for this CPU to get all Stack overflows
Demo Program: Clock_TB1.c
Detailed Lab Instructions: (add this to the previous Lab)
• Open breakpoint dialog: View | Breakpoints
• Modify previous breakpoint to 0x20FA
• Start program execution

Program should stop in ‘delay’ function when the return address is saved on the stack but this
does not work.
Note: Program will also stop (3 times) during the initialization part (CStartup)

• Create new “Conditional” Breakpoint
Break At: 0x20FA
Type: MAB
Operator: ==
Access: write
Mask: not enabled
Action: Break

• Close the dialog with OK
• Start program execution

Program should stop now also in the function ‘delay’

© 2006 Texas Instruments Inc, Slide 15

Program Fetch Observation
• A problem with function

pointers to improve and
optimize code or function
tables could make the PC
jump somewhere. Finding
this problems is very hard
because the origin of the
problem could not be
detected.

• Set a range breakpoint:
Start: 0x2100
End: 0x1FFFF
Access on Fetch if outside
range

© 2006 Texas Instruments Inc, Slide 16

Lab: Program Fetch Observation
Target: Halt CPU when loading an instruction in invalid range

Demo Program: Clock_TB1.c

Detailed Lab Instructions:
• Open breakpoint dialog: View | Breakpoints
• Clear all previous breakpoints
• Create new “Range” Breakpoint

Start Value: 0x2100
Range delimiter: End Value -> 0x1FFFF
Type: Address (MAB)
Access: Fetch
Action: Break
Action when: Outside range

• Close the dialog with OK
• Reset and Start program execution

Program should stop when the function ‘foo’ is called (because ‘foo’ is placed into
info memory at 0x1000) (This should take approximately 8 seconds.)

© 2006 Texas Instruments Inc, Slide 17

Lab: Using the Trace for Fetch
Observation
• Open the State Storage Control

Enable state Storage
Enable Buffer wrap around
Trigger action: None
Storage Action on: Instruction Fetch
Apply

• Open the State Storage
Window

• Execute Program again:
Push the reset Button and execute
the program again
After the breakpoint was hit observe
the output in the State Storage Window

© 2006 Texas Instruments Inc, Slide 18

Break on Read/Write to Invalid Memory

• Example:
The CPU should stop if a
read access from a
specified memory area
occurs (0xC00 to 0xFFF
in this case).

© 2006 Texas Instruments Inc, Slide 19

Lab: Break on Read/Write to Invalid Memory
Target: Halt CPU when accessing invalid memory
Demo Program: Clock_TB1.c
Detailed Lab Instructions:
• Open breakpoint dialog: View | Breakpoints
• Clear all previous breakpoints
• Create new “Range” Breakpoint

Start Value: 0xc00
Range delimiter: End Value -> 0xFFF
Type: Address (MAB)
Access: Read/Write
Action: Break
Action when: Inside range

• Close the dialog with OK
• Reset and Start program execution

Program should stop when the line :” *(ptr + 2) = *ptr + 0x1234;” is executed as
this does access the Boot loader Memory.
Additional step: Try to modify the trigger to Read or Write only. Check the
difference within the disassembler window.

© 2006 Texas Instruments Inc, Slide 20

Lab: Trace on Write to Memory
Target: Trace the information which is written into a dedicated

memory address during program execution
Demo Program: Clock_TB1.c
Detailed Lab Instructions:
• Open breakpoint dialog: View | Breakpoints
• Clear all previous breakpoints
• Create New “Conditional” Breakpoint:

Break At: uiLoopcounter
Type: MAB
Operator: ==
Access: write
Mask: not enabled
Action: State Storage Trigger

• Close the dialog with OK
• Setup State Storage:

Enable state Storage
Enable Buffer wrap around
Trigger action: None (disabled)
Storage Action on: Triggers
Apply

• Reset and Start program execution
Start and Stop Program execution or set a breakpoint on the call of the foo function. You
should see the last view increments of the uiLoopcounter variable in the State storage window.

© 2006 Texas Instruments Inc, Slide 21

Lab: Real-Time Watch
Target: Trace the information which is written into a

dedicated memory address during program
execution and read the data without stopping the
CPU

Demo Program: Clock_TB1.c
Detailed Lab Instructions: (add this to the previous)
• Start program execution
• Open the State Storage Window and press the update

button
A snapshot of the last trace entries is read and
displayed in the State Storage Window

© 2006 Texas Instruments Inc, Slide 22

Lab: Stop on Memory Access with
dedicated Value
Target: Trace the information which is written into a dedicated memory

address during program execution
Demo Program: Clock_TB1.c
Detailed Lab Instructions:
• Open breakpoint dialog: View | Breakpoints
• Modify the previous “Conditional” Breakpoint:

Break At: uiLoopcounter
Type: MAB
Operator: ==
Access: write
Mask: not enabled
Action: Break
Condition MDB value: 0x100
Condition Operator: ==
Condition Access: write

• Close the dialog with OK
• Add the uiLoopCounter to the Watch Window
• Start program execution

Check the content of uiLoopcounter after program execution did stop. It should contain 0x100.

© 2006 Texas Instruments Inc, Slide 23

Trigger Sequencer
• Can create a linear

program sequence before
a trigger is accepted for a
break or state storage
event

• Useful if an event occurs
only after a given
sequence in the program
has taken place

© 2006 Texas Instruments Inc, Slide 24

Lab: Trigger Sequencer
Target: Halt CPU if a certain program sequence was executed
Demo Program: Clock_TB1.c
Detailed Lab Instructions:
• Open breakpoint dialog: View | Breakpoints
• Clear all previous breakpoints
• Set a code breakpoint in line 56: “uiLoopcounter++;”
• Set a code breakpoint in line 82: “_NOP();”
• Open the Trigger “Sequencer Control” Window

Enable Sequencer
Transition Trigger 0: 0x1004 [F]
Transition Trigger 1: Bypass
Transition Trigger 2: 0x2182 [F]
Action: Break
Reset States
Apply

• Reset and Start program execution
Program should stop after “uiLoopcounter++;” but the variable is already
incremented to 513. So the Breakpoint is activated after the funtion foo
was exectued. To repeat the test goto the Trigger Sequencer window and
push the “Reset States” Button

© 2006 Texas Instruments Inc, Slide 25

Complex Trigger Sequencer
• No Lab – just to show that

this is also available
• Allows a trigger on

complex system
sequences

• Restart and reset
conditions for the
sequencer can also be
defined

© 2006 Texas Instruments Inc, Slide 26

Clock Control
• Different applications have different requirements

for the clock control during debug
• For instance, it might be dangerous to stop a clock

for a timer which is generating a PWM signal for a
motor.

Similar requirements could exists for the Flash, UART, ADC, etc.

• Clock control may be needed when the clock is
triggering a counter which continuously requests
interrupts during the stop time, for example an RTC

© 2006 Texas Instruments Inc, Slide 27

Clock Control
• Stop & release Clock for

TimerB
• Check PWM output (P2.2)
• Check debugging. If ISR is

active set a breakpoint in
the ISR

• Test single stepping with
Clock for TimerB stopped
and released

© 2006 Texas Instruments Inc, Slide 28

Lab: Clock Control
Target: Check device operation w/ different clock control setup
Demo Program: Clock_TB1.c
Detailed Lab Instructions:
• Open breakpoint dialog: View | Breakpoints
• Clear all previous breakpoints
• Close the dialog with OK
• Start Debugger
• Open Emulator | Advanced | Clock Control Dialog

Click on the Advanced Button
Enable Extended Clock Control
Check TimerB so that Clock for TimerB is stopped on Emulation hold

• Close the dialog with OK
• Accept reset of the CPU
• Start program execution

Check PWM output (P2.2 - LED1)
Check software toggled output (P2.1 - LED2)

© 2006 Texas Instruments Inc, Slide 29

Lab: Clock Control
• Stop program execution

Check PWM output (P2.2 - LED1)
Check software toggled output (P2.1 - LED2)

• Try to single step through the program (esp. main program)
• Open Emulator | Advanced | Clock Control Dialog
• Enable Extended Clock Control
• Uncheck TimerB so that clock for TimerB is not stopped on

Emulation hold
• Close the dialog with OK
• Accept reset of the CPU
• Start Program execution

Check PWM output (P2.2 - LED1)
Check software toggled output (P2.1 - LED2)

• Stop Program execution
Check PWM output (P2.2 - LED1)
Check software toggled output (P2.1 - LED2)

• Try to single step through the program (esp. main program)

© 2006 Texas Instruments Inc, Slide 30

Combining Breakpoints
• The Breakpoint Combiner

dialog (Emulator | Advanced)
allows the combination of two
or more individual breakpoints
or triggers

• The Sub-Trigger is added to the
Main-Trigger with an AND
combination

• The Sub-Trigger stays
unmodified in the system

A break action set on the Sub-Trigger
stops execution independent from the
Main-Trigger
Normally the Break Action should not
be set for the Sub-Trigger

© 2006 Texas Instruments Inc, Slide 31

DMA Trigger
• During Program execution a single memory location

could be accessed by the CPU and/or the DMA
• Allowing Trigger to detect between these two

different types of accesses provides better control
over software execution and maintaining real-time
behavior of the system as much as possible without
stopping the CPU

© 2006 Texas Instruments Inc, Slide 32

DMA Trigger
Setting a break on a DMA
transfer means that the CPU
will stop only if a certain
value is written into a
dedicated address by the
DMA

• Use Breakpoint Combiner to
combine MAB & MDB
Triggers

Only the Main Trigger should have
the Break Action set!

• The CPU should stop if a
DMA transfer of the Space
Character into the UART TX
Buffer is done

© 2006 Texas Instruments Inc, Slide 33

Lab: DMA Trigger
Target: Halt CPU the 0x20 moves to UCA0TXBUF via

the DMA
Demo Program: ATC2006_DMA_Demo.c
Detailed Lab Instructions:
• Open breakpoint dialog: View | Breakpoints
• Clear all previous breakpoints
• Create new “Advanced Trigger”, set first trigger:

Break At: UCA0TXBUF (0x6F)
Type: MAB
Operator: ==
Mask: not enabled
Access Type: No Instruction Fetch
Action: No Break
OK

© 2006 Texas Instruments Inc, Slide 34

Lab: DMA Trigger
• Set second trigger:

Break At: 0x20 (“space” character)
Type: MDB
Operator: ==
Mask: Enable: 0x00FF (only Byte access)
Access Type: Write & DMA Access
Action: Break
OK

• Close the dialog with OK
• Open “Breakpoint Combiner” dialog:

Emulator | Advanced | Breakpoint Combiner
• Right click on ‘Advanced Trigger @ 0x20 [MDB-WD]’

Add trigger ‘Advanced Trigger @ 0x67 [MAB-!f]
• Close the dialog with OK
• Start program execution
• Program should stop each time the DMA transfers the ‘space’

character to the UART TX buffer but. Note: It does not stop on
the first transmitted character which is sent directly by the CPU.

© 2006 Texas Instruments Inc, Slide 35

• Open breakpoint dialog: View | Breakpoints
• Create new “Advanced Trigger”

Break At: 0x72 (‘r’ character)
Type: MDB
Operator: ==
Mask: Enable: 0x00FF (only Byte access)
Access Type: Write & No DMA Access
Action: Break
Apply

• Close the dialog with OK
• Open terminal program: 9600 / 8N1
• Open “Breakpoint Combiner” dialog :

Emulator | Advanced | Breakpoint Combiner
• Right click on ‘Advanced Trigger @ 0x72 [MDB-W!D]’

Add trigger ‘Advanced Trigger @ 0x67 [MAB-!f]
• Close the dialog with OK, reset program, start program execution
• Program should stop when software transmits ‘r’ but not ‘space’

to the UART TX buffer. Also stops each time the DMA transfer
‘space’.

Lab: DMA Trigger

© 2006 Texas Instruments Inc, Slide 36

Summary
• The EEM logic allows powerful trigger and break settings making

hard to find errors easily identifiable
• No additional hardware testing is necessary after development and

evaluation with EEM
• Cost effective and efficient method of debugging
• Compatible across all products
• Facilitates true analog performance and behavior
• In-system and in-field debugging possible
• Observation of variables in a running system enables a deeper view

into the application
• Given the flexibility of the EEM, implementation of additional features

are possible and will be added in the near future including statistical
code coverage and better implementation of real-time watches

x00geoff
Text Box
SLAP121

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

