MSP430 Advanced Technical Conference 2006

Dallas dexas

Hands-On: Experiencing Enhanced
Emulation Debugging

Stefan Schauer
Product Application Engineer
Texas Instruments

T

Agenda

 Introduction to the Embedded Debug Logic (Enhanced Emulation
Module: EEM)

= Show different implementation Levels of the EEM
= EEM Limitations and Behaviors

o Lab: Setting a Breakpoint on Stack Overflow
» Using On-Chip Trace Buffer to see where the problem did occur

e Lab: Setting a Breakpoint on Fetch outside allowed Area
= Using On-Chip Trace Buffer to see where the problem did occur

e Lab: Setting a Breakpoint on a Variable
= Stop on Write
= Trace on Write
= Stop on Write of a dedicated Value

« Lab: Using the Trigger Sequencer

« Lab: Clock Control

« Lab: Using On-Chip Trace Buffer as Real-Time Watch

« Lab: Building own complex Breakpoints with combining of Triggers

© 2006 Texas Instruments Inc, Slide 2

Technology for Innovators” Wi TEXAS INSTRUMENTS

Embedded Emulation

* Debug real time in system H —

= No application resources used P
= Full speed f <—-—-—-—-—-—::¥EE>'
= Breakpoint ,:" CPU JJ;:S
u Slngle step :" ‘ Hardware
. Complex trigger ':.' Breakpoints
. : Instructi

Trace ; "Decode

; TMS =
i R TAP || Fuse
Clock , TDI |

Generation

V4
Code
Securit

Digital
Peripherial

© 2006 Texas Instruments Inc, Slide 3

Technology for Innovators” Wi TEXAS INSTRUMENTS

FET — One Tool For Ever

« Assembler/linker
« 4KB C compiler
« Common IDE

« JTAG interface

e Target Board

e $149 USD

'5‘5" Texas
INSTRUMENTS
MSP430 USB-Debug-interface
MSP-FETU430IF
Use

Target

Ce

Devic

= [5]x]

Walun Locatan

|| ety = EET) ARit_map_parasmiars(= |
- R a3 R clesrset £lag to request reinit =l Eror (ot 1) U
1 an |
o ElFE427_Maonure_.. » | = -
0 CiHeadeFiles | 238 4,
b— B calitvaton b 18
= 237 #1edee warhDaspley |
— B devica h an Displaybatai):
|) dhispley b 239 i v ERDEspl |
| = Bemeerooih 240 | |
| F— Bometarh 24l B
— [fatder_ncled b 242 4/
) paramesarh =
Il serddatah | CFAI Rogies =
M| b= Bssdinth FF Sy W [rc = OxAFCA
| = BSsubmutines b | =p = Ox0SFE
| UARTIR s = 0x0000
W o Toosa R4 - Ox0004
| st ; | &5 » 0x0070
8 [cebbration.c | me - Dxg012
1 [B) eomms_usd e : 7 - OxOOAD
(i [B) cepleny o | | R = O0xOD1E
2 [emeter.c] 353 ¢ Imit. amelog frent-end (3igme-delts ADC) | =3 - 0xDO1E
= O Qusput | 254 _emalog_fromc_end() : | R0 = Umti2
— EiDebug_dump b - 255 nit. Eubedded Sigral Frocsssing parsssters | k11 = Ux0070
— B devica h ¢ 256 | wz - 0x0200
) disployh 287 T - OnEFFF
R K14 = OxCEDE
) emeter b 388 4 Tast. WART | ‘pis b
b— BESP_Pamamee ¥ | CYCLECOUNTER = 0
— Eint30h ! CCTIMERL =0
j intirgics h - | CCTIMERZ =0
) rspd il h |
— B pasmecarh) T - o et
J sanddata b N
e | 265 SendStringibansec
| = ——— 286 Deost | (unsigred char)
| reer | [T4
Goa | [Memcey][t
01ad 0000 0000 0000 0000 0000 [T A7
Ll Mb0 0000 0000 0000 0000 0000 aoon -
oo 0990
O0AFDO 30122000 push v #0x20 EEff 030
OOAFDY JEAD00LD v F0x1000 K14 £E£f 0000 0000 0009
QOAFD: Flwh, R12 0000 0000 d0al Owad
Sinmat 11 0606 Fi0a 1244 0101
- 0000 0000 0000 G000
QUAFED BO12FBAE finat_systen 0000 0090 0000 0000
0800 0000 0000 000D
ODAFEA DOLZ1AAT call Finit_snalog_front_end 2 0900 0000 0000 000D
e - e 0000 0000 0000 0000
o3 - = 4 0260 0000 0000 0000 0000 0000 0000 0000 0000
by [Crumismes 0 U270 0000 0000 0900 090D DOOD 0000 0000 0U0Y &
sty in 756, Cds]

e

Technology for Innovators®

© 2006 Texas Instruments Inc, Slide 4

wi# TEXAS INSTRUMENTS

tecture

ch

MSP430 EEM Ar

o — —— — — —

Reg. Write

Reg. Write

MAB/MDB

Basic Triggers

MAB/MDB

Sequencer

Basic Trigger Combination

© 2006 Texas Instruments Inc, Slide 5

wi# TEXAS INSTRUMENTS

™

2
Lo
O
]
©
>
o
c
c
—
o
y—
>
(@)
)
o
c
K -
o
T

Avallable EEM Resources

F20xx / Fa3x |
Device Fll:i’;i/ F12x2 FFlfA),(x/ FFlng/ Eg;‘ i; F41x IIZI\E/\L/lézl)Z(X/ FG43x | FAdx |
Fo3yx FG46x
Triggers
MAB/MDB-Trigger 2 2 3 8 2 2 2 2 8
<=/>= - - X X - - - - X
R/W - - - X - - - - X
DMA - X - X - - - X -
16bit Mask - - - X - - - - X
Reg.-Write-Trigger - - - 2 - - - - 2
<=/>=1 - - - X - - - - X
16bit Mask - - - X - - X
Combination 2 2 3 8 2 2 2 2 8
Trigger Sequencer - - - 1 - - - - 1
Reactions
Break X X X X X X X X X
State Storage - - - X - - - - X
State Storage
Internal - - - X - - - - X
Clock Control
Global - - - X X X X X X
Modules - - - X - - - X X
Note: Flash devices only © 2006 Texas Instruments Inc, Slide 6

Technology for Innovators® Wi TEXAs INSTRUMENTS

Influence and Resource Reguirement

The EEM:
 Does not use any internal CPU registers or memory
* Does not use interrupt vectors

 Does not insert debugging code or software
oreakpoints

 Has no influence on the program until a break event

Exception:
* Devices <=28 pin share the JTAG pins with port pins
 Spy Bi-Wire: use of RST/NMI pin

© 2006 Texas Instruments Inc, Slide 7

Technology for Innovators” Wi TEXAS INSTRUMENTS

Exceptions

« Complex breakpoints stop the CPU after the
Instruction causing the break.

e When a break occurs, the execution of the current
instruction will always be completed.

« EEM cannot prevent an invalid value from being
written into an address or register.

It Is not possible to trigger on timer values. Only the
values on the address or data bus can be observed.

© 2006 Texas Instruments Inc, Slide 8

Technology for Innovators” Wi TEXAS INSTRUMENTS

Where to find the menus

e Breakpoint:
= View | Breakpoint

 New Breakpoint:
= Right Click into the Breakpoint window and select New Breakpoint

« State Storage Configuration
= Emulator | State Storage Control

e State Storage Window

= Emulator | State Storage Window

e Trigger Sequencer Control
= Emulator | Sequencer Control

© 2006 Texas Instruments Inc, Slide 9

Technology for Innovators” Wi TEXAS INSTRUMENTS

Agenda

Introduction to the Embedded Debug Logic (Enhanced Emulation
Module: EEM)

= Show different implementation Levels of the EEM
= EEM Limitations and Behaviors

o Lab: Setting a Breakpoint on Stack Overflow
» Using On-Chip Trace Buffer to see where the problem did occur

« Lab: Setting a Breakpoint on Fetch outside allowed Area
= Using On-Chip Trace Buffer to see where the problem did occur

e Lab: Setting a Breakpoint on a Variable
= Stop on Write
= Trace on Write
= Stop on Write of a dedicated Value

e Lab: Using the Trigger Sequencer

« Lab: Clock Control

« Lab: Using On-Chip Trace Buffer as Real-Time Watch

« Lab: Building own complex Breakpoints with combining of Triggers

© 2006 Texas Instruments Inc, Slide 10

Technology for Innovators® Wi TEXAs INSTRUMENTS

Lab: Stack Observation

» Nested functions or Eitheapont x)
local declarations if — kit
arrays could easily lead o &
to thls prOblem fIHTddressbus (MAE] %pezritnr iEEESS ﬁazﬁ}ame

. Set a conditional el o -
breakpoint on the Stack .
Pointer so that the CPU [oexs | [Lene A v
stops if the SP . de |- T
decreases below L] e
0x20CO. [

© 2006 Texas Instruments Inc, Slide 11

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: Stack Observation

Target: Halt CPU if SP decrements below a certain level
Demo Program: Clock _TB1l.c

Detailed Lab Instructions:

 Open breakpoint dialog: View | Breakpoints

Clear all previous breakpoints

Create new “Conditional” Breakpoint

Break At: SP (for Stack Pointer — Note: ‘SP’ should be upper case !)
Type: Register

Operator: <=

Access: write

Mask: not enabled

Condition: 0x20CO

Action: Break

Close the dialog with OK

Start program execution

» Program should stop in the function ‘foo’ after the 80 bytes have been allocated on
the stack (This should take approximately 8 seconds.)

© 2006 Texas Instruments Inc, Slide 12

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: Using Trace for Stack Observation

« Open the State Storage 8
CO n tro I ¥ Enable state storage Reset State storage triggers
[Buffer wrap around 4
» Enable state Storage _ ooy |
= Enable Buffer Wrap around Trigger ackion Skorage action on
. . " Stark on krigger " Triggers
. Trlgger aCtlon None " Stop on trigger f+ Instruction Fetch
= Storage Action on: Instruction Fetch * tone | Aleees
~> Apply
 Open the State Storage
Window
) Tak
ExeCUte Prog ram ag ain: Update | | Autornatic update | | Append dat:
= Push the reset Button and execute Address . | Instr. bAnemonic Data bus...
the program again Ox2192 B013010 calla #foo 0x13B0
» After the breakpoint was hit observe | 01000 a180A00 subaw #0x4A0 5P OxE037 |
the output in the State Storage LTIl ShE ey LSS
WindOVFJ 9 M= 10 B290EB3411 cmpw #0x3E8.Eu.. Ox90BZ
Oxe 1 Ch FAZB jnc Ix21BC OxZBFA,
0= 1 CE 1071 reta Ox0710
O 1 84 B2Y9002211 cmpaw #0x200,8u... Ox490BZ
(=790 Fo23 jne Ox2182 Ox3F8

© 2006 Texas Instruments Inc, Slide 13

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: Stack Observation (MSP430X)

Due to the speed improvements in the MSP430X CPU an additional
Breakpoint is required for this CPU to get all Stack overflows

Demo Program: Clock_TB1l.c

Detailed Lab Instructions: (add this to the previous Lab)
 Open breakpoint dialog: View | Breakpoints

Modify previous breakpoint to Ox20FA

Start program execution

» Program should stop in ‘delay’ function when the return address is saved on the stack but this
does not work.

» Note: Program will also stop (3 times) during the initialization part (CStartup)

« Create new “Conditional” Breakpoint Ve &l
u Break At: OXZOFA 5 Conditionall
* Type: MAB g
u Operator: == Type Dperator Access M azk
- Access: write il ES 4~ =
= Mask: not enabled | e o | e
u ACtIOﬂ Break Conditian Action
w Dperatar Access o [z
* Close the dialog with OK i Lo | [Ca || e
. [Enable <= " Read/wiite ~
e Start program execution [6r | | 1
= Program should stop now also in the function ‘delay’ S

Technology for Innovators” Wi TEXAS INSTRUMENTS

Program Fetch Observation

A problem with function

pointers to improve and Bl =

optimize code or function 5 o |

tables could make the PC I =

jump somewhere. Finding Range delme

this problems is very hard ~ L

because the origin of the l‘"ﬂ"ﬂj:f:ﬂ“‘ﬁ e

problem could not be

detected. s 4001 | ot || e || e
(" Data [MDB] | ¢ it State || Outside rangs

e Set arange breakpoint: | Poadie| T

Start: 0x2100

End: OX1FFFF =

Access on Fetch if outside

range

© 2006 Texas Instruments Inc, Slide 15

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: Program Fetch Observation

Target: Halt CPU when loading an instruction in invalid range

Demo Program: Clock_TB1.c

Detailed Lab Instructions:
 Open breakpoint dialog: View | Breakpoints
e Clear all previous breakpoints

 Create new “Range” Breakpoint
= Start Value: 0x2100
Range delimiter: End Value -> Ox1FFFF
Type: Address (MAB)
Access: Fetch
Action: Break
Action when: Outside range

e Close the dialog with OK

 Reset and Start program execution
» Program should stop when the function ‘foo’ is called (because ‘foo’ is placed into
info memory at 0x1000) (This should take approximately 8 seconds.)

© 2006 Texas Instruments Inc, Slide 16

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: Using the Trace for Fetch

Observation

 Open the State Storage Control
» Enable state Storage
» Enable Buffer wrap around
= Trigger action: None
= Storage Action on: Instruction Fetch

- Apply

« Open the State Storage
Window

 Execute Program again:
= Push the reset Button and execute
the program again
= After the breakpoint was hit observe
the output in the State Storage Window

[v Enable stake storage
[w Buffer wrap around

Trigger action

(" Skart on trigger
" Skop on krigger
* Mone

Recet State storage kriggers

Storage action on

" Triggers

{* Inskruckion Fetch
&l cycles

© 2006 Texas Instruments Inc, Slide 17

Technology for Innovators” Wi TEXAS INSTRUMENTS

Break on Read/Write to Invalid Memory

O e AN a
ﬁ Range]

* Example:
The CPU should stop ifa | ea |

B ange delimiter

read access from a - Bl vohe

1fi * Length
specified memory area ¢ Lean
occurs (0xCO0O0 to OxFFF Gva00 Eoi.
I n t h I S C a.S e) . Type Access Achion Achion when...
¢ Address [MAB)| | {° Bead v Break {* |ngide range
" Data[MDE] £ Wit State " Outzide range
« Feadfwitg | Storage
(" Fetch Ligeer
k. Cancel

© 2006 Texas Instruments Inc, Slide 18

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: Break on Read/Write to Invalid Memory

Target: Halt CPU when accessing invalid memory
Demo Program: Clock _TB1l.c

Detailed Lab Instructions:

 Open breakpoint dialog: View | Breakpoints
Clear all previous breakpoints

Create new “Range” Breakpoint
= Start Value: 0xc00
» Range delimiter: End Value -> OxXFFF
Type: Address (MAB)
Access: Read/Write
Action: Break
Action when: Inside range

Close the dialog with OK

Reset and Start program execution

» Program should stop when the line :” *(ptr + 2) = *ptr + 0x1234;” is executed as
this does access the Boot loader Memory.
Additional step: Try to modify the trigger to Read or Write only. Check the
difference within the disassembler window.

© 2006 Texas Instruments Inc, Slide 19

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: Trace on Write to Memory

Target: Trace the information which is written into a dedicated

memory address during program execution

Demo Program: Clock_TB1.c

Detailed Lab Instructions:

 Open breakpoint dialog: View | Breakpoints
o Clear all previous breakpoints

» Create New “Conditional” Breakpoint:

Break At: uiLoopcounter

Type: MAB

Operator: ==

Access: write

Mask: not enabled
Action: State Storage Trigger

Close the dialog with OK
Setup State Storage:
= Enable state Storage
= Enable Buffer wrap around
= Trigger action: None (disabled)
= Storage Action on: Triggers
> Apply
Reset and Start program execution

= Start and Stop Program execution or set a breakpoint on the call of the foo function. You
should see the last view increments of the uiLoopcounter variable in the §§)§te storage window.

Eefyi byt a'
} Conditional
Break At
Edit...
Tupe Dperator Apcess b &gk
+ Addiess bus [MABR)| | & —= " Bead [Enable
" Data buz [MDE] ” s * yiite
" Register » = " Readfwrite
» = " Fetch
Condition Action
MDB Value
’7 Dperator Arccezs B ety
& == * Fead State
Mask (" 5= ™ Wwirite v ?:;:Enllgas:e
[Enable (<= (" Readiite
i 1=
aE. | Cancel

e 20

Technology for Innovators®

wi# TEXAS INSTRUMENTS

Lab: Real-Time Watch

Target: Trace the information which is written into a
dedicated memory address during program
execution and read the data without stopping the
CPU

Demo Program: Clock _TB1l.c

Detailed Lab Instructions: (add this to the previous)
e Start program execution

 Open the State Storage Window and press the update
button

» A snapshot of the last trace entries Is read and
displayed in the State Storage Window

© 2006 Texas Instruments Inc, Slide 21

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: Stop on Memory Access with
dedicated Value

Target: Trace the information which is written into a dedicated memory
address during program execution
Demo Program: Clock _TB1l.c
Detailed Lab Instructions: |
e Open breakpoint dialog: View | Breakpoints = [F= -
;- Conditional
 Modify the previous “Conditional” Breakpoint:| ...
= Break At: uiLoopcounter uloopcourer Edt. |
[Type MAB (Igpe Operatar Access b ask.
- —_ * Address buz [(MAB]| | ¢ == aa [Enable
- ggferggor\}vﬁt_e (" Data bus [MDE) ;>= ;wﬂ_wit: [OxFFFFF
- . " Reqister 4= (" Readfwrite
= Mask: not enabled 1= || £ Fetch
= Action: Break o e
= Condition MDB value: 0x100 T oag | Qe A o
= Condition Operator: == = o | |6 wie B
= Condition Access: write '_’i pal L -
* Close the dialog with OK
. . ok | Cancel
 Add the uiLoopCounter to the Watch Window
e Start program execution
= Check the content of uiLoopcounter after program execution did stop. It should contain 0x100.
20 de 22

Technology for Innovators” Wi TEXAS INSTRUMENTS

Trigger Sequencer

e Can create alinear

program sequence before | -
a trigger is accepted for a Dl
break or state storage
event
e Useful if an event occurs
Debug L | Buil BrLkp-:M Disassem | Stake Skarage Cc | Skake Storage Wi

only after a given
seqguence in the program

has tak | -
p v Enable sequencer el Cuirent state ; 0
v Break
v Brea [Reset Trigger Apply ‘
[State Storage Trigger | J
Advanced »»
Tranzition trigger 0 Tranzition trigger 1 Tranzition trigger 2
| 01004 [F] | = |-bypasz > | = |0x1004 [F] | = Action

© 2006 Texas Instruments Inc, Slide 23

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: Trigger Sequencer

Target: Halt CPU if a certain program sequence was executed
Demo Program: Clock_TB1.c

Detailed Lab Instructions:
 Open breakpoint dialog: View | Breakpoints
o Clear all previous breakpoints
Set a code breakpoint in line 56: “uiLoopcounter++;”
Set a code breakpoint in line 82: “ NOP();”
Open the Trigger “Sequencer Control” Window
Enable Sequencer
Transition Trigger 0: 0x1004 [F]
Transition Trigger 1: Bypass
Transition Trigger 2: 0x2182 [F]
Action: Break
- Reset States
- Apply
Reset and Start program execution
= Program should stop after “uiLoopcounter++;” but the variable is already
incremented to 513. So the Breakpoint is activated after the funtion foo
was exectued. To repeat the test goto the Trigger Sequencer window and
push the “Reset States” Button

© 2006 Texas Instruments Inc, Slide 24

Technology for Innovators” Wi TEXAS INSTRUMENTS

Complex Trigger Sequencer

r SunUsney

 No Lab — jUSt to show that 'FEblq -
this is also available e I s B i e PR

L 3 . -Advanced
. L SR MBS ¥ Use advanced setup
« Allows atrigger on SR o
) EDdEI s Hange] Trangition trigger a Trangition trigger b Tranzition trigger a Tranzition trigger b

Com p IeX SyStem Braak At latkofF] x| |- -l |otiie] | |oaedF |
_{lr:?-?., l.i"-.-“-‘-.TE"\T {Stach Nedstate[1 v Netstaie[n ~] Neststate[3 w| Neststae[g]
Sequences | Sar eztStac

Tupe e e L e
P Tranzition trigger a Tranzition trigger b Tranzition trigger a Tranzition trigger

{* Address bus
° d [RETEIEI I =l E | B
Res t art an d r es et L gata buss Mest state]2 | Mest state]l:l - Mest statem Mest state |0 -

Condltlons for the " Register [value)
Action . —
sequencer can also be | .. . e o [

. I State Storage Trigger Cancel
defined T '
[[5
== {* Head

Op
)
(" »= " wirite
~
~

State 1 State 3 [action state]-

e

K

di

Code (@ Memany:0x1104 _ Bemove
Conditonal (22 10 work A T CAT estStack O verflowh T estStack O verflow. o |
Conditonal @& {0 wark AT CAT estStack O verflowh T estStack Overflow. o). 7 Remowve Al

Conditonal @ {0 weork AT CAT estStack O verflowh T estStack O verflow.ch.1
| |

© 2006 Texas Instruments Inc, Slide 25

Technology for Innovators” Wi TEXAS INSTRUMENTS

Clock Control

e Different applications have different requirements
for the clock control during debug

 For instance, it might be dangerous to stop a clock

for a timer which is generating a PWM signal for a
motor.

= Similar requirements could exists for the Flash, UART, ADC, etc.

 Clock control may be needed when the clock is
triggering a counter which continuously requests
Interrupts during the stop time, for example an RTC

© 2006 Texas Instruments Inc, Slide 26

Technology for Innovators” Wi TEXAS INSTRUMENTS

diLE

Clock Control
Tooks Window Help

« Stop & release Clock for 1 wsesatriens —
. ' Release 1TAG on Go
TI m er B Be_synn:hrn:nnizje ITaG

° Ch eCk PWM Output (P2.2) Init Mew Device

h . a: Show Used Breakpoints, ., MEDd F0F149
« Check debugging. If ISR is re— T
aCt I V e S et a. b reak p O I n t I n Skate Storage Contral Memory Durmp
Skate Storage Window -)
t h e I S R Sequencer Contral Breakpoint Combiner. ..
i, ——=LED
° TESt S|ng|e Stepp|ng W|th Eeigpla Clyeie Copipyl ﬂ
CIOCk for T|merB StOppEd v Enable Extend Clock Conbral K
E stended Clock Caontral
and released . . Cance
eck to stop module on emulation stop
v WWTD [USARTO Advanced
v Timer & ™ USARTY -
v Timer B [Flazh Cantrol
[v Baszic Timer [ADC Clack on ext. pin
[LCD Frequency v ACLE
[w 2 bit Tirmer [w SKCLE
[v Tirner Port [w MCLE

© 2006 Texas Instruments Inc, Slide 27

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: Clock Control

Target: Check device operation w/ different clock control setup
Demo Program: Clock _TB1.c
Detailed Lab Instructions:

Open breakpoint dialog: View | Breakpoints
Clear all previous breakpoints

Close the dialog with OK

Start Debugger

Open Emulator | Advanced | Clock Control Dialog
= Click on the Advanced Button
= Enable Extended Clock Control
» Check TimerB - so that Clock for TimerB is stopped on Emulation hold

Close the dialog with OK
Accept reset of the CPU

Start program execution
» Check PWM output (P2.2 - LED1)
» Check software toggled output (P2.1 - LED?2)

- e 28

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: Clock Control

e Stop program execution
» Check PWM output (P2.2 - LED1)
» Check software toggled output (P2.1 - LED2)

 Try to single step through the program (esp. main program)

« Open Emulator | Advanced | Clock Control Dialog

 Enable Extended Clock Control

 Uncheck TimerB - so that clock for TimerB is not stopped on
Emulation hold

e Close the dialog with OK

 Accept reset of the CPU

o Start Program execution
» Check PWM output (P2.2 - LED1)
= Check software toggled output (P2.1 - LED2)

e Stop Program execution
» Check PWM output (P2.2 - LED1)
» Check software toggled output (P2.1 - LED2)

« Try to single step through the program (esp. main program)

Q2008 Toxas lnstoumentsloc Sllde 29

Technology for Innovators” Wi TEXAS INSTRUMENTS

Combining Breakpoints

« The Breakpoint Combiner

dlalog (EmUIator | Advanced) e AP OTTisEonTOTes ﬂ1
allows the combination of two Mtk s sk s g ok 1o
or more individual breakpoints |

Advanced Trigger (@ 0220 [MDEB WD)

or triggers chanced Trigger ® 0467 MAB.F)

Advanced Trgger @ 0272 [MDB-WID]
« The Sub-Trigger is added to the
Main-Trigger with an AND
combination

« The Sub-Trigger stays
unmodified in the system Carce o

= A break action set on the Sub-Trigger
stops execution independent from the
Main-Trigger

= Normally the Break Action should not
be set for the Sub-Trigger

© 2006 Texas Instruments Inc, Slide 30

Technology for Innovators” Wi TEXAS INSTRUMENTS

DMA Trigger

e During Program execution a single memory location
could be accessed by the CPU and/or the DMA

« Allowing Trigger to detect between these two
different types of accesses provides better control
over software execution and maintaining real-time
behavior of the system as much as possible without
stopping the CPU

© 2006 Texas Instruments Inc, Slide 31

Technology for Innovators” Wi TEXAS INSTRUMENTS

D MA Tr | ! l ! l er Breakpoint.Combiner ﬂ*
o ekt dapendangy, 1 2
Setting a break on a DMA e @O R
transfer means that the CPU Advarond T 0072 MDB WD)
will stop only if a certain
value is written into a B et =l
dedicated address by the 2 Advanced Tiger
DMA f&:;;ﬂt N
 Use Breakpoint Combiner to . et ok
combine MAB & MDB 9l v o
Triggers e
= Only the Main Trigger should have - o
the Break Action set! hecess e g
» The CPU should stop if a s -
DMA transfer of the Space
Character into the UART TX Bl e

Buffer is done

© 2006 Texas Instruments Inc, Slide 32

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: DMA Trigger

Target: Halt CPU the 0x20 moves to UCAOTXBUF via
the DMA

Demo Program: ATC2006_DMA_ Demo.c

Detailed Lab Instructions:
 Open breakpoint dialog: View | Breakpoints
e Clear all previous breakpoints

e Create new “Advanced Trigger”, set first trigger:
Break At: UCAOTXBUF (Ox6F)

Type: MAB

Operator: ==

Mask: not enabled

Access Type: No Instruction Fetch

Action: No Break

- OK

© 2006 Texas Instruments Inc, Slide 33

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: DMA Trigger

e Set second trigger:

Break At: 0x20 (“space” character)

Type: MDB

Operator: ==

Mask: Enable: OXOOFF (only Byte access)
Access Type: Write & DMA Access
Action: Break

- OK

e Close the dialog with OK
 Open “Breakpoint Combiner” dialog:
Emulator | Advanced | Breakpoint Combiner

* Right click on ‘Advanced Trigger @ 0x20 [MDB-WDJ’
» Add trigger ‘Advanced Trigger @ 0x67 [MAB-!f]

e Close the dialog with OK

e Start program execution

 Program should stop each time the DMA transfers the ‘space’
character to the UART TX buffer but. Note: It does not stop on
the first transmitted character which is sent directly by the CPU.

© 2006 Texas Instruments Inc, Slide 34

Technology for Innovators” Wi TEXAS INSTRUMENTS

Lab: DMA Trigger

 Open breakpoint dialog: View | Breakpoints
Create new “Advanced Trigger”
Break At: Ox72 (‘r character)
Type: MDB
Operator: ==
Mask: Enable: OXxOOFF (only Byte access)
Access Type: Write & No DMA Access
Action: Break
- Apply
e Close the dialog with OK
 Open terminal program: 9600 / 8N1
« Open “Breakpoint Combiner” dialog :
Emulator | Advanced | Breakpoint Combiner
* Right click on ‘Advanced Trigger @ 0x72 [MDB-W!DJ’
= Add trigger ‘Advanced Trigger @ 0x67 [MAB-!f]
 Close the dialog with OK, reset program, start program execution
 Program should stop when software transmits ‘r’ but not ‘space’
to the UART TX buffer. Also stops each time the DMA transfer
‘space’.

Technology for Innovators” Wi TEXAS INSTRUMENTS

Summary

The EEM logic allows powerful trigger and break settings making
hard to find errors easily identifiable

No additional hardware testing is necessary after development and
evaluation with EEM

Cost effective and efficient method of debugging
Compatible across all products

Facilitates true analog performance and behavior
In-system and in-field debugging possible

Observation of variables in a running system enables a deeper view
Into the application

Given the flexibility of the EEM, implementation of additional features
are possible and will be added in the near future including statistical
code coverage and better implementation of real-time watches

SLAP121 © 2006 Texas Instruments Inc, Slide 36

Technology for Innovators” Wi TEXAS INSTRUMENTS

x00geoff
Text Box
SLAP121

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask
work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from Tl to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service
voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business
practice. Tl is not responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of Tl products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its
representatives against any damages arising out of the use of Tl products in such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products
are designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, Tl will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Amplifiers Audio ww Ircom/audid
Data Converters Automotive [vww i.com/automotivg
DSP fisp t.con] Broadband [Www it.com/broadband
Interface Digital Control
Logic [ogic.ficom Military
Power Mgmt pRowerfr.coni Optical Networking [vww.fi.com/opficalnetworH
Microcontrollers picrocontroller-tr.com Security
RFID Telephony [pww ir-com/telephony
Low Power Video & Imaging [vww fi.com/vided
Wireless

Wireless [vww Ti.com/wirelesd

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

